Table of Contents

Linear Algebra - Dimension of a vector space

About

The dimension of a vector space V is the size of a basis for that vector space written:

dim Span = rank

Dimension Lemma

If U is a subspace of W then

Example:

Theorem

Kernel-Image

Definition

For any linear function <math>f : V \mapsto W</math> : <MATH> \text{dim } \href{function#kernel}{Ker} f + \text{dim } \href{function#image}{lm} f = \text{dim V} </MATH>

Rank-Nullity

Apply Kernel-Image Theorem to a matrix function f (x) = Ax:

For any n-column matrix A, <MATH> \href{matrix#nullity}{nullity } A + \href{rank}{rank } A = n </MATH>

Dual Dimension

Example

Dual Dimension Theorem: <MATH>dim V + dim V^* = n</MATH>

Proof:

Let <math>a_1, \dots , a_m</math> be generators for V.

Let <math>A = \begin{bmatrix} \begin{array}{r} a_1 \\ \hline \\ \vdots \\ \hline \\ a_m \end{array} \end{bmatrix} </math> then <math>V^* = \href{matrix#null space}{Null} A</math>

Rank-Nullity Theorem states that