The set of vectors u such that u · v = 0 for every vector v in V is called the dual of V. Dual is written as <math>V^*</math> .
Definition: For a subspace V of <math>\mathbb{F}^n</math> , the dual space of V, written <math>V^*</math> , is: <MATH> V^* = \{ u \in \mathbb{F}^n : u.v = 0 \text{ for every vector v} \in V\}\ </MATH>
The dual of Span {a1, . . . , am} is the solution set for a1 · x = 0, . . . , am · x = 0
Let <math>a_1, \dots , a_m</math> be a basis for a vector space V. Let <math>b1, . . . , bk</math> be a basis for the dual V* of the vector space V.
generators for a vector space V → Algorithm → generators for dual space <math>V^*</math>
Let <math>a_1, \dots , a_m</math> be generators for V.
Let <math>A = \begin{bmatrix} \begin{array}{r} a_1 \\ \hline \\ \vdots \\ \hline \\ a_m \end{array} \end{bmatrix} </math> then <math>V^* = \href{matrix#null space}{Null} A</math>
Let V = Span {[1, 0, 1], [0, 1, 0]}. Then V* = Span {[1, 0,−1]}:
Let V = Span {[1, 0, 1], [0, 1, 0]}. Then V* = Span {[1, 0, 1]}: