Spark - (Map|flatMap)

Spark Pipeline

Spark - (Map|flatMap)

About

The map implementation in Spark of map reduce.

  • map(func) returns a new distributed data set that's formed by passing each element of the source through a function.
  • flatMap(func) similar to map but flatten a collection object to a sequence.

Example

Multiplication

rdd = sc.parallelize([1,2,3,4])
rdd.map(lambda x: x * 2).collect()
[2,4,6,8]

  • def function
rdd = sc.parallelize([1,2,3,4])
def plus5(x):
    return x+5
rdd.map(plus5).collect()
[6, 7, 8, 9]

flatMap

On 1 list

rdd = sc.parallelize([1,2,3])
rdd.flatMap(lambda x:[x,x+5]).collect()
[1,6,2,7,3,8]

On a list of list

sc.parallelize([[1,2],[3,4]]).flatMap(lambda x:x).collect()
[1, 2, 3, 4]

Key Value

key value (tuple) transformation are supported

from operator import add
wordCounts = sc.parallelize([('rat', 2), ('elephant', 1), ('cat', 2)])
totalCount = (wordCounts
              .map(lambda (x,y): y)
              .reduce(add))
average = totalCount / float(len(wordCounts.collect()))
print totalCount
print round(average, 2)
5
1.67





Discover More
Spark Pipeline
RDD - Calling a Worker (Local|External) Process

How to call a (forked) external process from Spark Example with a
Spark Pipeline
Spark - (RDD) Transformation

transformation function in RDD Transformations Description filter returns a new data set that's formed by selecting those elements of the source on which a function returns true. distinct([numTasks]))...
Spark Pipeline
Spark RDD - String

Add the line number as a value of a tuple ? where:



Share this page:
Follow us:
Task Runner