Linear Algebra - Row-Addition Matrix

Card Puncher Data Processing

About

<math> \begin{bmatrix} 1 & 0 & 0 \\ \hline 2 & 1 & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} </math> is called an elementary row-addition matrix as:

<MATH> \begin{bmatrix} 1 & 0 & 0 \\ \hline 2 & 1 & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} \underbrace{ \begin{bmatrix} b_1 \\ \hline b_2 \\ \hline b_3 \end{bmatrix}}_{Matrix B} = \begin{bmatrix} b_1 \\ \hline 2 b_1 + b_2 \\ \hline b_3 \end{bmatrix} </MATH>

Property

Invertible

A row-addition matrix is Linear Algebra - Matrix.

<math> \begin{bmatrix} 1 & 0 & 0 \\ \hline 2 & 1 & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} </math> and <math> \begin{bmatrix} 1 & 0 & 0 \\ \hline -2 & 1 & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} </math> are Linear Algebra - Matrix.





Discover More
Matrix Matrix Multplication
Linear Algebra - Matrix Matrix (Multiplication)

Matrix Matrix (Multiplication) definition . Two matrices may be multiplied when they are conformable: ie the number of columns in the first matrix is equal to the number of rows in the second matrix....
Card Puncher Data Processing
Linear Algebra - Row Space of a matrix

Row space If a matrix is in echelon form, the nonzero rows form a basis for the row space. Applying elementary row-addition operations does not change the row space. To find basis for row...



Share this page:
Follow us:
Task Runner