About
Data Mining - Principal Component (Analysis|Regression) (PCA|PCR) in R.
Articles Related
Function
prcomp
Package stats
Steps
Perform the analysis
pcaData = prcomp(USArrests, scale=TRUE)
where:
- scale=TRUE will standardize the variables in order to take into account the different unity.
Review the principal component data
- The data
pcaData
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494
Rotation:
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rapee -0.5434321 -0.1673186 0.8177779 0.08902432
- The variables associated (names)
names(pcaData)
[1] "sdev" "rotation" "center" "scale" "x"
- Unclass will show the data :)
unclass(pcaData)
$sdev
[1] 1.5748783 0.9948694 0.5971291 0.4164494
$rotation
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rapee -0.5434321 -0.1673186 0.8177779 0.08902432
$center
Murder Assault UrbanPop Rapee
7.788 170.760 65.540 21.232
$scale
Murder Assault UrbanPop Rapee
4.355510 83.337661 14.474763 9.366385
$x
PC1 PC2 PC3 PC4
Alabama -0.97566045 1.12200121 -0.43980366 0.154696581
Alaska -1.93053788 1.06242692 2.01950027 -0.434175454
Arizona -1.74544285 -0.73845954 0.05423025 -0.826264240
Arkansas 0.13999894 1.10854226 0.11342217 -0.180973554
California -2.49861285 -1.52742672 0.59254100 -0.338559240
Colorado -1.49934074 -0.97762966 1.08400162 0.001450164
Connecticut 1.34499236 -1.07798362 -0.63679250 -0.117278736
Delaware -0.04722981 -0.32208890 -0.71141032 -0.873113315
Florida -2.98275967 0.03883425 -0.57103206 -0.095317042
......................................
Plot the data
biplot(pcaData, scale=0)