R - Generalized linear model (glm)
Function
Statistics - Generalized Linear Models (GLM) - Extensions of the Linear Model
Function
glm
Binary Logistic Regression
Statistics - Binary logistic regression
glm with the argument family equals binomial in order to apply the logit transformation.
binaryLogisticModel <- glm(data$outcome ~ data$predictor1 + data$predictor2 + .... + data$predictorn,
family = binomial)
summary(binaryLogisticModel )
Call:
glm(formula = data$outcome ~ data$predictor1 + data$predictor2 + data$predictor3, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.8413 -0.3307 0.1902 0.5212 1.6435
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.748e-02 3.571e+00 -0.005 0.996
data$predictor1 3.721e-01 1.424e-01 2.612 0.009 **
data$predictor2 -1.373e+01 6.942e+00 -1.977 0.048 *
data$predictor3 -7.554e-02 4.646e-01 -0.163 0.871
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 34.372 on 26 degrees of freedom
Residual deviance: 18.068 on 22 degrees of freedom
AIC: 28.068
Number of Fisher Scoring iterations: 6
contingency tables or class tabs.