Statistics - Generalized Linear Models (GLM) - Extensions of the Linear Model

1 - About

The Generalized Linear Model is an extension of the linear model that allows for lots of different, non-linear models to be tested in the context of regression.

GLM is the mathematical framework used in many statistical analyses such as:

GLM is a supervised algorithm with a classic statistical technique (Supports thousands of input variables, text and transactional data) used for:

GLM implements:

Confidence bounds are supported with a

  • GLM classification for prediction probabilities.
  • GLM regression for predictions.

3 - Assumptions

The General Linear model has two main characteristics:

  • Linear: linear relationships between the predictors and the outcome measure.
  • Additive: the effects of each predictor are additive with one another

That doesn't mean that the GLM can't handle non-additive or non-linear effects.

Removing the additive assumption:

GLM can accommodate such non-additive or non-linear effects with:

  • Transformation of variables: in order to make them linear
  • Adding interaction terms or moderation terms: in order to do a moderation analysis and test for non-additive facts.

4 - Methods

Methods that expand the scope of linear models and how they are fit:

  • Classification problems: logistic regression, support vector machines
  • Non-linearity: kernel smoothing, splines and generalized additive models; nearest neighbour methods.
  • Interactions: Tree-based methods, bagging, random forests and boosting (these also capture non-linearities)
  • Regularized fitting: Ridge regression and lasso. These have become very popular lately, especially when we have data sets where we have very large numbers of variables–so-called wide data sets, and even linear models are too rich for them, and so we need to use methods to control the variability.

Data Science
Data Analysis
Statistics
Data Science
Linear Algebra Mathematics
Trigonometry

Powered by ComboStrap