Statistics - R-squared ( |Coefficient of determination) for Model Accuracy

Thomas Bayes


<math>R^2</math> is an accuracy statistics in order to assess a regression model. It's a summary of the model.

<math>R^2</math> is the percentage of variance in Y explained by the model, the higher, the better.

The largest r squared is equivalent to the smallest residual sum of squares.

R squared is also known as:

  • the fraction of variance explained.
  • the sum of squares explained.
  • Coefficient of determination

It's a way to compare competing models.

R squared: two same definitions with two different formulations:

  • R squares tells us the proportion of variance in the outcome measure that is explained by the predictors
  • or The predictor explains (R squared) percentage of the variance in the outcome measure.

If R Squared increases the models get better.

Example by adding multiple predictor if R Squared increased, we say that the model is boosted.

r squared tells the proportion of variance explained by a linear regression model, by a least squares model.


<MATH> \begin{array}{rrl} R^2 & = & 1 - \frac{\href{RSS}{RSS}}{TSS} \\ TSS & = & \sum^N_{i=0} (y_i - \bar{y})^2 \\ \end{array} </MATH>

Documentation / Reference

Discover More
Weka Accuracy Metrics
Data Mining - (Parameters | Model) (Accuracy | Precision | Fit | Performance) Metrics

Accuracy is a evaluation metrics on how a model perform. rare event detection Hypothesis testing: t-statistic and p-value. The p value and t statistic measure how strong is the...
Plot Best Subset Selection
R - Feature Selection - Indirect Model Selection

In a feature selection process, once you have generated all possible models, you have to select the best one. This article talks the indirect methods. We will select the models using CP but as...
Card Puncher Data Processing
R - Feature selection - Model Generation (Best Subset and Stepwise)

This article talks the first step of feature selection in R that is the models generation. Once the models are generated, you can select the best model with one of this approach: Best...
Card Puncher Data Processing
R - Interaction Analysis

interaction with R . An interaction term between a numeric x and z is just the product of x and z. lm processes the “” operator between variables andautomatically: add the interaction...
Card Puncher Data Processing
R - Multiple Linear Regression

Multiple linear regression with R functions such as lm Unstandardized Multiple Regression Regression analyses, standardized (in the z scale). The point is a short-cut to select all variables....
Lasso Cv Plot
R - Shrinkage Method (Ridge Regression and Lasso)

Unlike subset and forward stepwise regression, which controls the complexity of a model by restricting the number of variables, ridge regression keeps all the variables in and shrinks the coefficients...
Thomas Bayes
Statistics - (Interaction|Synergy) effect

In a multiple regression, is assumed that the effect on the target of increasing one unit of one predictor (is independent|has no influence) on the other predictor. If this is not the case, sharing a...
Lasso Vs Ridge Regression211
Statistics - (Shrinkage|Regularization) of Regression Coefficients

Shrinkage methods are more modern techniques in which we don't actually select variables explicitly but rather we fit a model containingall p predictors using a technique that constrains or regularizes...
Univariate Linear Regression
Statistics - (Univariate|Simple|Basic) Linear Regression

A Simple Linear regression is a linear regression with only one predictor variable (X). Correlation demonstrates the relationship between two variables whereas a simple regression provides an equation...
Thomas Bayes
Statistics - Adjusted R^2

A big R squared indicates a model that really fits the data well. But unfortunately, you can't compare models of different sizes by just taking the one with the biggest R squared because you can't compare...

Share this page:
Follow us:
Task Runner