Mathematics - Combination (Binomial coefficient|n choose k)

Thomas Bayes


A combination is a selection of elements from a set where the order of selection does not matter.

Order doesn't matter means that the selections AB and BA are considered a single combination (a single selection).

If the order does matter such as in a digital lock (pin) or the arrival order of a race, the term used is permutation


  • with the set {1,2,3}
  • with a selection without_repetition (where the elements are deleted from the set when selected)
  • the possible selections are:
    • 1 2 3
    • 1 3 2
    • 2 1 3
    • 2 3 1
    • 3 1 2
    • 3 2 1
  • and are all equivalent to the single combination 1 2 3 (because the order in the selections does not matter)

The most known example is a lottery - if the number are selected in the bad order, you still win.



Without repetition

When repeat is not valid (ie AA is not a valid pair)

We say that:

  • the elements selected are removed from the set.
  • no duplicate element can not be found in a selection.

The best known example of a combination without repetition is lottery numbers (2,14,15,27,30,33)

Combination calculation without repetition is also known as:

  • n choose k, because there are <math>\displaystyle n\choose k</math> ways to choose k elements from a set of n elements.
  • or Binomial coefficient 1) because it's a coefficient in the binomial theorem

Without repetition, the number of combination possible of length k in a set of possible value of length n is: <MATH> \binom nk = (n \text{ choose } k) = \frac{n(n-1)\dotsb(n-k+1)}{k(k-1)\dotsb1} = \frac{n!}{k!(n-k)!} </MATH>


  • k is also known as:
    • the trial number, k = 0, 1, …, n
    • the number of elements in each combination
  • n is also known as:
    • the number total of trial
    • the number of element in the whole set

n! is factorial n

Therefore, when the length of the set is equal to the length of the combinations, the number of combinations is 1.

With repetition

Combination where repetition is allowed is also known as:

  • k-selection,
  • k-combination with repetition

Example: coins in your pocket (5,5,5,10,10)

There are <math>\tbinom {n+k-1}k</math> ways to choose k elements from a set of n elements if repetitions are allowed.

<MATH> \binom {n+k-1}k = ({n+k-1} \text{ choose } k) = \frac{(k+n-1)!}{k!(n-1)!} </MATH>

Documentation / Reference

Discover More
Binomial Distribution
(Probability|Statistics) - Binomial Distribution

The binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p. The...
Sorting Quicksort Anim
Algorithm - Big O Notation

The big-Oh notation is a vocabulary for the design and analysis of algorithms. See: Asymptotic analysis Notation is just . Terminology: running time is O(n...
Math Domain
Mathematics - Factorial

The factorial of a non-negative integer x is equal to the product of all integers less than or equal to x and greater than zero. For example: factorial(4) would equal 4 3 2 1, which is 24. In factorial,...
Thomas Bayes
Mathematics - Permutation (Ordered Combination)

A permutation is a selection of elements from a set where the order of selection matters. Order matters means that the selections AB and BA are considered as two differents selections. combination ...
Card Puncher Data Processing
Python - Combination Codebook

This code can use only numbers. An other processing is needed to apply it to string or symbol. output: With itertools, all characters are allowed. output: Recursive comprehension: Generation...
Card Puncher Data Processing
R - Choose (binomial coefficient)

The binomial coefficient n choose 2 is the number n times n minus 1 over 2.
Thomas Bayes
Statistics - (Base rate fallacy|Bonferroni's principle)

Every accurate (model|test) can be useless as detection tools if the studied case is sufficiently rare among the general population. The data model will produce too many false positives or false negatives....

Share this page:
Follow us:
Task Runner